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Assessorato Regionale della Difesa dell’Ambiente
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09123 - Cagliari
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Oggetto: Impianto di coincenerimento rifiuti della societa Laviosa Chimica

Mineraria S.p.A. stabilimento di Villaspeciosa, Localita Perda
Bianca”. Procedimento di valutazione di impatto ambientale
(V.ILA.) “ex post”. D.Lgs. 152/2006, e s.m.i. e Delib.G.R. n. 11/75 del
2021.
(altrimenti definito: “Impianto di produzione materiali assorbenti per
animali domestici (lettiere) mediante la lavorazione di materiali
inerti (argille bentonitiche) essicate utilizzando nell’installazione,
quale combustibile, gli oli esausti (messa in riserva R13 e
coincenerimento: R1 all’'allegato “C” della parte quarta del decreto
legislativo 3 aprile 2006, n. 152)” giusto “Avviso al Pubblico” in data
08.10.2024)

Osservazioni.

Con riferimento all'oggetto, obiettivo della presente & quello di
Rappresentare all’Autorita Competente per il procedimento di Valutazione
Impatto Ambientale alcune evidenze desumibili dal quadro documentale che
sostanzia il progetto della Societa “Laviosa Chimica Mineraria S.p.A..” (nel
sequito indicata come “Proponente”) unitamente ad alcuni ulteriori elementi
conoscitivi e valutativi su base essenzialmente tecnica cosi come previsto dall’
art. 24, comma 3 del del D. Lgs.152/2006, innovato e sostituito dall’art. 21,
comma 1, lettera b), della legge n. 108 del 2021.

Trattasi in estrema sintesi di osservazioni in relazione alla

documentazione progettuale depositata per la partecipazione del Pubblico e



sulle omissioni in essa chiaramente riscontrabili in relazione all'impatto del
progetto proposto non solo sul’/Ambiente Naturale ma anche e soprattutto in
relazione alla Pubblica Sanita ed Incolumita delle Popolazioni residenti nel
circondario del sito d’intervento.

Nello specifico:

e Inattendibilita in relazione alle effettive caratteristiche delle materie
prime elaborate.

e Omessa produzione di specifica valutazione in relazione agli impatti
sanitari direttamente connessi all'implementazione del progetto,
procedura FONDAMENTALE ed INDEROGABILE ogniqualvolta emerga la
concreta ipotesi di rischi per la salute delle Popolazioni Residenti nelle
aree interessate, in osservanza del Principio di Precauzione in materia
ambientale, inserito a pieno titolo nell’Ordinamento Vigente (Art. 191
T.F.U.E. e Art. 3 ter del decreto legislativo n. 152/2006 e s.m.i.).

e Consequente NULLITA” dello Studio di Impatto Ambientale

prodotto/ipotesi di improcedibilita dell’istanza di VIA in parola.

La congruenza della tesi suesposta con il caso in specie & sinteticamente
illustrata nel seguito con l'ausilio di Documentazione scientifica afferente la

specifica problematica evidenziata ed idonea a supportare la stessa.

1) Argille bentonitiche: un materiale inerte?

Come chiaramente evidenziato gia nel citato Avviso al Pubblico (e diffusamente
richiamato in tutta la documentazione progettuale), secondo la valutazione del
Proponente, le argille bentonitiche utilizzate come materia prima nell’Impianto
di Villaspeciosa sarebbero un materiale inerte.

Appare alquanto d’uopo richiamare la definizione che della bentonite viene data
a norma del Regolamento CLP dalla ECHA — European Chemicals Agency -

(Agenzia europea per le sostanze chimiche).



Tale Ente collabora con la Commissione europea e i governi dell’UE per
individuare le sostanze che suscitano “preoccupazioni” e prendere decisioni in
materia di gestione dei rischi a livello Comunitario.

Esso disciplina le sostanze chimiche e i biocidi sul mercato dell’UE, tratta i
fascicoli in materia di sostanze chimiche per 1’industria e ne verifica la
conformita alla Normativa Comunitaria.

Oltre cio, circostanza di particolare rilevanza nel caso in trattazione, fornisce
informazioni sulle sostanze chimiche e il loro uso sicuro attraverso un’unica
banca-dati gratuita.

Dalla consultazione di tale banca-dati e stata rilevata un’univoca scheda
(INFOCARD) relativa ai materiali denominati “bentonite” (che si riporta come
Allegato-1 in coda alla presente nota) nella quale si esplicita per tale prodotto
I’obbligo di etichettatura con pittogramma GHS-07 — “Health Hazard” (“=

pericolo per la salute”) e I’apposizione della “significativa” avvertenza :

“Warning! According to the classification "Attenzione! Secondo la classificazione fornita
provided by companies to ECHA in CLP dalle Aziende allECHA nelle notifiche CLP,
notifications, this substance causes serious questa sostanza provoca grave irritazionel
eye irritation, causes skin irritation and may oculare, provoca irritazione della pelle e pud
cause respiratory irritation” causare irritazione delle vie respiratorie"

La bentonite (nel caso corrente essenzialmente 1’urasite) non puo pertanto

essere assolutamente assimilata ad un materiale inerte ma deve essere
considerata a tutti gli effetti un minerale industriale di caratteristiche alquanto
insidiose, essenzialmente per la granulometria ( dso tipico - che puo essere fatto
coincidere con la cd. dimensione di liberazione - pari o inferiore a 0,002 mm,
ovvero 2 micrometri).

Questo equivale a dover ammettere che la bentonite (e quindi I’urasite) ha un
contenuto percentuale iniziale in polveri sottili ed in ultrafini (o polveri PM-2,5
denominate polveri respirabili in quanto sono in grado di penetrare anche nel

tratto inferiore dell’apparato respiratorio, dalla trachea sino agli alveoli



polmonari) tendenzialmente molto elevato - valore che tende naturalmente e
rapidamente a crescere in seguito, ad esempio, di trattamenti di manipolazione,
in particolar modo meccanica come nel caso dei processi descritti dallo stesso
Proponente che caratterizzano le attivita che si realizzano nello stabilimento di
Villaspeciosa.

Inequivocabilmente I'intero processo processo produttivo & caratterizzato da
fenomeni di “perdita di massa materiale” che con evidenza non avviene
unicamente dai punti di emissione indicati con la siglatura E1, E2, E3 E4 ed E8
come desumibile dalla Relazione Specialistica - Modelli Matematici di
Dispersione in  Atmosfera - (Documento: “Relazione  Modello
Climatologico_ REV0”) ma anche certamente dal Parco materie prime,
(costituito da cumuli di bentonite vergine stoccata alla rinfusa) e dai piazzali
dello stesso stabilimento di Villaspeciosa che, come ci si rende edotti dalla
lettura della pagina 22 dello Studio di Impatto Ambientale (documento:

“Studio di Impatto Ambientale_LCM.pdf”) costituiscono:

..”Lalternativa all’'utilizzo del olio esausto, quale combustibile, oltre
all'olio di raffineria, é sostanziata dalla possibilita di effettuare
l'essiccazione solare della bentonite. Tale procedura produttiva viene, allo
stato attuale, gia adottata, nei mesi estivi nei piazzali dello stabilimento di
Villaspeciosa nel periodo estivo. Tuttavia, non puo, totalmente, essere

adottata per i restanti periodi dell’anno...”

Sia la movimentazione fra Parco materie prime e piazzali, sia quella fra gli stessi
e la tramoggia di alimentazione all’'essiccatore (vera “bocca d’impianto”)
avvengono ovviamente ed evidentemente con uso di mezzi meccanici.

Altrettanto ovvia appare pertanto la possibile generazione di “polveri” (per
quanto “stagionalizzata”) le quali con evidenza possono essere facilmente
catturate dai flussi eolici e disperse in modo alquanto (se non del tutto)

incontrollato (di dubbia o scarsa efficacia appaiono i riferimenti a



nebulizzazioni e/o spruzzature con acque piu’ o0 meno addizionata di latte di
calce, a fronte di eventuali nuvole di corpuscoli in balia dei flussi eolici).

Polveri la cui distribuzione granulometrica -c.d. “fuso granulometrico” -

esattamente come quelle disperse dai punti di emissione indicati con la
siglatura E1, E2, E3 E4 ed E8 e appunto genericamente e laconicamente
indicate come “polveri” nello stesso Documento: “Relazione Modello

Climatologico_REV0” non puo assolutamente essere data per scontata.

Distribuzione granulometrica che altresi condiziona qualsivoglia ipotesi di
congruita ed adeguatezza dello studio di Dispersione in Atmosfera e delle
relative Tavole Grafiche, peraltro gravato e con tutta probabilita inficiato

dall’utilizzo, nella redazione, dei dati anemometrici e climatologici della

Stazione di Decimomannu relativi ad 1 sola annualita (2013) e dello stesso

utilizzo di un software (Windimula v. 3.x) che risulta alquanto datato

(evidentemente antecedente a Settembre 2013, data di rilascio della versione

V. 4.0) e presumibilmente obsoleto.

Distribuzione granulometrica in relazione alla quali il “Proponente”, anche in
presenza di una “cospicua”, “corposa” ma soprattutto “ponderosa”
documentazione progettuale, parrebbe forse aver ritenuto (alquanto
“inappropriatamente” come verra illustrato al punto successivo) di non dover
impegnare tempo e risorse quantunque si potrebbero fare considerazioni,
anche solo a titolo di semplice esempio, in relazione alle caratteristiche di
(lunga) persistenza in aria delle particelle ultrafini ed eventualmente
considerare gli effetti cumulativi (la bentonite contiene generalmente minerali
associati e silice libera cristallina nelle sue forme polimorfe — sostanza
quest'ultima classificata come irritante, fibrogeno e/o sclerogeno e come
sospetto cancerogeno per 'uomo (cat.A2 dall’A.C.G.I.H. (American Conference
of Governmental Industrial Hygienists) e come cancerogena per I'uomo
(gruppo 1) dalla I.LA.R.C. (International Agency for Research on Cancer), con
valore limite di esposizione indicato in 0,1 mg/mc per la frazione respirabile,

ovvero PM2,5).



Considerazioni che in questa Sede ma rischierebbero di apparire quasi
ridondanti.

Un’ultimo ulteriore cenno si ritiene meriti I'evidenza che sono proprio le
frazioni piU’ fini ad avere la capacita di rimanere piu’ a lungo in sospensione
aerea e pertanto di coprire, per trasporto eolico, le maggiori distanze rispetto
al punto d’emissione ma questo... collide nuovamente con la piu volte citata
Relazione Specialistica - Modelli Matematici di Dispersione in Atmosfera

inclusa dal Proponente fra i documenti progettuali.

2) Polveri diffuse: distribuzione granulometrica e problematiche connesse.

Diversamente da quanto appena evidenziato in relazione all’operato dal
Proponente, la rilevanza della distribuzione granulometrica del particolato
(polveri) che verra ineluttabilmente diffuso dalle attivita in progetto e/o gia in
atto nello stabilimento di Villaspeciosa (trattandosi di una procedura di V.I.A.
ex-post), emerge con cristallina chiarezza da tutta una serie di Documenti
Scientifici, Studi ed Articoli portati all’attenzione della Comunita Scientifica
Internazionale e del Pubblico da svariati Team Accademici di incontestabile
Competenza Settoriale.

In questa sede si ritiene del tutto opportuno quanto sufficiente richiamare
I’attenzione sul contenuto di un Lavoro pubblicato sulla prestigiosa Rivista
Internazionale “Lancet Planet Health” — vol 7 — March 2023, redatto da un
Team coordinato dal Prof. Yu Wenhua del “Climate, Air Quality Research
Unit, School of Public Health and Preventive Medicine” - Monash
University, Melbourne, titolato: “Global estimates of daily ambient fine
particulate matter concentrations and unequal spatio-temporal distribution
of population exposure: a machine learning modelling study”.
Di tale Lavoro, che si allega alla Presente per farne parte integrante e
sostanziale con la denominazione di Allegate-3, si ritiene assolutamente

significativo gia il semplice passo introduttivo:



Fine particulate matter (PM, ) is a leading risk factor
for premature mortality and morbidity worldwide.
According to a Global Burden of Disease Study, outdoor
air pollution (including ambient particulate matter)
was estimated to cause 6-67 million premature deaths
in 2019." In addition, no safe threshold for PM, . has
been identified below which no damage to health is
observed.*’ An abundance of evidence has supported
the adverse effects of short-term and long-term ambient
PM, . exposure on human health, even at low PM,
concentrations.’

Ovvero:
“Il particolato fine (PM-2,5) é uno dei principali fattori di rischio-mortalita
prematura e e morbilita in tutto il mondo. Secondo uno studio globale
sulle cause di malattia l'inquinamento dell'aria esterna (compreso il
particolato ambientale) esso é stato stimato come causa dai 6 ai 67
milioni di morti premature nel 2019. Inoltre, non é stata identificata una
soglia di sicurezza per il PM-2,5 al di sotto della quale non si osservano
danni alla salute. Numerose evidenze supportano l'evidenza di effetti
negativi sulla salute umana dell'esposizione sia a breve sia a lungo

termine al PM-2,5 anche a basse concentrazioni...”

Non si ritiene ci sia molto altro da aggiungere se non rimarcare che... a fronte

della certa produzione e diffusione di particolato secondo le modalita

illustrate al punto precedente, la documentazione progettuale prodotta dal
Proponente NON prende assolutamente in considerazione una problematica

potenzialmente esiziale per il Circondario del sito dello stabilimento di

Villaspeciosa e per la sua Popolazione ed impedisce pertanto di poter

avanzare anche soltanto di una pura e semplice interpunzione grafica nella
conoscenza e definizione di una problematica di Sanita Pubblica che appare
assolutamente quanto drammaticamente concreta e tangibile e pertanto da

considerare come _autentica, inderogabile e vincolante base per qualsivoglia

Valutazione che pur si voglia voglia aggettivare come “di Compatibilita

Ambientale”.



Conclusioni

Sebbene — in linea di principio — nell'ambito di un procedimento per il rilascio
di VIA non risulti al momento obbligatorio procedere a specifica Valutazione di
Impatto Sanitario, appare anche d’uopo ricordare che la sentenza del Consiglio
di Stato, Sez. IV, 11 febbraio 2019, n. 983 ha stabilito che:

“..La valutazione di impatto sanitario (V.I.S.), normalmente necessaria per le
centrali termiche, i grandi impianti di combustione (potenza termica superiore
a 300 MW), gli impianti di raffinazione, gassificazione, liquefazione (punti 1 e 2
dell’Allegato Il del decreto legislativo n. 152/2006 e s.m.i.), & comunque,
necessaria ogni volta che emerga in sede istruttoria la concreta ipotesi di un
rischio per la salute delle popolazioni interessate. Si tratta di espressione del
principio di precauzione in materia ambientale, ormai inserito a pieno titolo
nell’Ordinamento (art. 191 TFUE, art. 3 ter del decreto legislativo n. 152/2006 e
s.m.i.). In tali situazioni, se 'Amministrazione Pubblica non vi desse seguito,
incorrerebbe nel vizio dell’eccesso di potere sotto il profilo del mancato
necessario approfondimento istruttorio.”

Appare pertanto come assolutamente Razionale, Ragionevole, e
Giuridicamente Fondata I'ipotesi dell’inderogabilita di procedervi ogniqualvolta
emerga in sede istruttoria la concreta ipotesi di un rischio per la salute delle
popolazioni interessate. Ipotesi che non risulta poter essere “superata” e/o
“bypassata” nemmeno in presenza di progetti alquanto opportunamente
referenziati come “funzionali allleconomia dell’intero Territorio Regionale”
anche se forse lo risultano assai di piu’ per gli Interessi (economici) del
Proponente.

Si ritiene in ogni caso di aver fornito, con la presente breve Memoria, adeguati
elementi di valutazione in relazione alla cogenza/inderogabilita della
redazione/produzione nell’lambito del procedimento avviato di specifico studio
di valutazione in relazione agli impatti Sanitari sulla Popolazione Residente nel
Circondario territoriale su cui l'installazione di Villaspeciosa andra a gravare,

incluso soprattutto I'abitato del Comune di UTA, in relazione al quale i quartieri



residenziali di “Santa Porada”, “Bascus Argius” e “Pintulinu” risultano
immediatamente esposti a poche centinaia di metri - come chiaramente
desumibile dalla tavola grafica acclusa in coda alla presente come Allegato-2 -
sottovento rispetto ai flussi eolici dominanti da NW e da N-NW (Maestrale) -
alle emissioni dello stabilimento di Villaspeciosa, unitamente alla zona P.I.P,,
agli impianti sportivi ed allo stesso sito in cui & attualmente in realizzazione il
nuovo Plesso Scolastico Unificato, nellAmbito del Progetto “ISCOLAS”
finanziato dalla Regione Autonoma della Sardegna.

In assenza di tale fondamentale indagine non si vede alternativa
all’AUSPICARE che le osservazioni formulate in questo documento siano
considerate nell’lambito del presente procedimento di Valutazione d’Impatto
Ambientale da parte delle Autorita Competenti, ai sensi degli artt. 9 e ss.
della legge n. 241/1990 e s.m.i. e artt. 24 del decreto legislativo n. 152/2006
e s.m.i.,, e CHIEDERE che le stesse vogliano esprimersi con una FERMA,
MOTIVATA E DEFINITIVA VALUTAZIONE DI NON COMPATIBILITA AMBIENTALE,

ai sensi degli artt. 25 e ss. del decreto legislativo n. 152/2006 e s.m.i.

Uta 1i 08.11.2024 in fede




Allegato - 1
ECHA — European Chemicals Agency
Scheda (INFOCARD) relativa all’etichettatura obbligatoria
della sostanza denominata “bentonite”

Bentonite

A colloidal clay. Consists primarily of montmorillonite.

Regulatory process names 4 Translated names 23 IUPAC names 6 Other names 1 Other identifiers 13

Substance identity 3 Hazard classification & labelling

EC / List no.: 215-108-5
CAS no.: 1302-78-9
Warning! According to the classification provided by companies to

ECHA in CLP notifications this substance causes serious eye irritation,
r 1 causes skin irritation and may cause respiratory irritation.

L -4

Biocidal Uses

This substance is approved in the EEA and/or Switzerland for use in biocidal products more favourable for the
environment, human or animal health.

10



Allegato - 2

Inter - distanze reali Punti emissione macroinquinanti atmosferici
Impianto Laviosa — abitato di UTA

11



s erus

4

Villaggio .-
Azzurro ll

el 1
i SAPERRL R R T A

R |
¢, Decimomannu®g ]

"

Sa
o ¥

nt' Andrea

F B

oy CNASOL

oA 2




Allegato — 3

Impianto di coincenerimento rifiuti della societa Laviosa Chimica Mineraria S.p.A.
stabilimento di Villaspeciosa, Localita Perda Bianca”. Procedimento di valutazione di
impatto ambientale (V.I.A.) “ex post”. D.Lgs. 152/2006, e s.m.i. e Delib.G.R. n. 11/75

del 2021. - Osservazioni



Articles

Global estimates of daily ambient fine particulate matter
concentrations and unequal spatiotemporal distribution of
population exposure: a machine learning modelling study

Wenhua Yu, Tingting Ye, Yiwen Zhang, Rongbin Xu, Yadong Lei, Zhuying Chen, Zhengyu Yang, Yuxi Zhang, Jiangning Song, Xu Yue, Shanshan Li,
Yuming Guo

Summary

Background Short-term exposure to ambient PM, ; is a leading contributor to the global burden of diseases and
mortality. However, few studies have provided the global spatiotemporal variations of daily PM, ; concentrations over
recent decades.

Methods In this modelling study, we implemented deep ensemble machine learning (DEML) to estimate global daily
ambient PM, ; concentrations at 0-1°x0-1° spatial resolution between Jan 1, 2000, and Dec 31, 2019. In the DEML
framework, ground-based PM, ; measurements from 5446 monitoring stations in 65 countries worldwide were
combined with GEOS-Chem chemical transport model simulations of PM, ; concentration, meteorological data, and
geographical features. At the global and regional levels, we investigated annual population-weighted PM,
concentrations and annual population-weighted exposed days to PM,; concentrations higher than 15 pg/m3
(2021 WHO daily limit) to assess spatiotemporal exposure in 2000, 2010, and 2019. Land area and population
exposures to PM, ; above 5 pg/m3 (2021 WHO annual limit) were also assessed for the year 2019. PM, ; concentrations
for each calendar month were averaged across the 20-year period to investigate global seasonal patterns.

Findings Our DEML model showed good performance in capturing the global variability in ground-measured daily
PM, ;, with a cross-validation R2 of 0-91 and root mean square error of 7-86 pg/m3. Globally, across 175 countries, the
mean annual population-weighted PM, ; concentration for the period 2000-19 was estimated at 32-8 pg/m3 (SD 0-6).
During the two decades, population-weighted PM, ; concentration and annual population-weighted exposed days
(PM,.; >15 pg/m3) decreased in Europe and northern America, whereas exposures increased in southern Asia,
Australia and New Zealand, and Latin America and the Caribbean. In 2019, only 0.18% of the global land area
and 0-001% of the global population had an annual exposure to PM, ; at concentrations lower than 5 pg/m3, with
more than 70% of days having daily PM, ; concentrations higher than 15 pg/m3. Distinct seasonal patterns were
indicated in many regions of the world.

Interpretation The high-resolution estimates of daily PM, ; provide the first global view of the unequal spatiotemporal
distribution of PM,  exposure for a recent 20-year period, which is of value for assessing short-term and long-term

health effects of PM, ;, especially for areas where monitoring station data are not available.

Funding Australian Research Council, Australian Medical Research Future Fund, and the Australian National Health
and Medical Research Council.

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction exposure from 10 pg/m3 to 5 pg/m3 for the annual

Fine particulate matter (PM, ;) is a leading risk factor
for premature mortality and morbidity worldwide.
According to a Global Burden of Disease Study, outdoor
air pollution (including ambient particulate matter)
was estimated to cause 6-67 million premature deaths
in 2019." In addition, no safe threshold for PM, has
been identified below which no damage to health is
observed.”> An abundance of evidence has supported
the adverse effects of short-term and long-term ambient
PM, exposure on human health, even at low PM,
concentrations.* Therefore, the latest version of the
WHO global air quality guidelines published in 2021
has adjusted the recommended limit for outdoor PM,

www.thelancet.com/planetary-health Vol 7 March 2023

mean exposure and from 25 pg/m3 to 15 pg/m3 for
24-h mean exposure.’

Estimates of global PM,; concentrations are a pre-
requisite for health risk assessments of global air pollution.
Despite global expansion of the ground-based PM,
monitoring network (an example of which is the WHO
ambient air pollution database), the frequently sparse
spread and poor homogeneity in the distribution of
monitoring stations make accurate measurement of
global PM,, exposure challenging. Fortunately, with
improvement of statistical and machine learning methods,
the combination of emerging satellite products, chemical
transport model simulations, and ground monitor

-

x®

CrossMark

Lancet Planet Health 2023;
7:€209-18

Climate, Air Quality Research
Unit, School of Public Health
and Preventive Medicine

(WYu MPH, TYe MSc,

YiZhang MSc, R Xu PhD,

ZYang MPH, Yu Zhang PhD,

S Li PhD, ProfY Guo PhD), Turner
Institute for Brain and Mental
Health, School of Psychological
Sciences (Z Chen PhD), and
Monash Biomedicine Discovery
Institute, Department of
Biochemistry and Molecular
Biology (J Song PhD), Monash
University, Melbourne, VIC,
Australia; State Key Laboratory
of Severe Weather and Key
Laboratory of Atmospheric
Chemistry of CMA, Chinese
Academy of Meteorological
Sciences, Beijing, China

(Y Lei PhD); Jiangsu Key
Laboratory of Atmospheric
Environment Monitoring and
Pollution Control, Jiangsu
Collaborative Innovation
Center of Atmospheric
Environment and Equipment
Technology, School of
Environmental Science and
Engineering, Nanjing
University of Information
Science and Technology,
Nanjing, China (X Yue PhD)

Correspondence to:

Prof Yuming Guo, Climate, Air
Quality Research Unit, School of
Public Health and Preventive
Medicine, Monash University,
Melbourne, VIC 3004, Australia
yuming.guo@monash.edu

or

Dr Shanshan Li, Climate, Air
Quality Research Unit, School of
Public Health and Preventive
Medicine, Monash University,
Melbourne, VIC 3004, Australia
shanshan.li@monash.edu

For the WHO global ambient air
pollution database see https://
www.who.int/data/gho/data/
themes/topics/topic-details/
GHO/ambient-air-pollution

€209



Articles

For the US Environmental
Protection Agency air data see
https://aqs.epa.gov/agsweb/
airdata/download_files.html

For the China National
Environmental Monitoring
Centre see http://www.cnemc.
cn/en/

For the European
Environmental Agency air
quality database see https://
www.eea.europa.eu/data-and-
maps/data/agereporting-9

For the Australian National Air
Pollution Monitor Database
see https://osf.io/jxd98/
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Research in context

Evidence before this study

Assessing the disparities in global exposure to PM,; is crucial
for population health risk assessment. However, little is
known about the global short-term (daily) PM,, exposure and
its spatiotemporal variations. We searched PubMed and
Google Scholar for articles in English published between
Jan1, 2011, and Dec 31, 2021, with the terms “fine particulate
matter”, “PM,.", “global estimate”, and “short-term daily
exposure”. We found that most previous studies estimated
daily average PM, . distribution at the city or national levels.
Several studies have estimated global long-term trends in
PM,, concentrations, but few articles have reported daily
PM, , distribution worldwide. One article investigated the
global daily PM, distribution from 1997 to 2014; however,

it did not explore the inequality and spatiotemporal changes
in daily PM,; population exposure over decades.

Added value of this study

Our study provides a global perspective on the spatial and
temporal distribution of daily PM,; concentrations in
2000-19 and assesses the inequalities in global population
exposure on the basis of the new PM,, limits in the 2021 WHO
air quality guidelines. We used a deep ensemble machine

expansion offers novel opportunities to accurately assess
PM, , concentrations globally.® Global PM,  estimation
studies have typically focused on long-term (annual or
monthly average) PM, ; estimates,”® whereas few studies
have explored the short-term (from hours to days) exposure
to PM, concentrations at a global level’ Although
increasing numbers of studies have estimated daily PM, ,
concentrations at national and regional levels, such as in
China," Europe," and the USA,"” few studies have assessed
short-term PM,; exposure and its spatiotemporal
variations at the global level. The absence of uniformity in
global training data and inconsistency in estimation
methods create difficulties in comparing the previous
regional estimates and in providing a global view of the
spatiotemporal distribution in PM, ; exposure. Therefore,
estimating global daily PM,, concentration and its
spatiotemporal variations with unified study designs,
modelling approaches, and data sources is warranted.
Machine learning algorithms, especially ensemble
machine learning technologies, have proven to be promis-
ingly efficient for geospatial air pollution prediction” and
have been increasingly applied in the estimation of PM,
concentration, offering high accuracy and the ability to
handle large numbers of features with nonlinear asso-
ciations.” Ensemble learning algorithms use a collection of
multiple machine learning algorithms to achieve an
optimal combination of predictions.* Multiple studies
have indicated that ensemble machine learning could
provide better estimations in environmental exposure
assessment than a single machine learning model alone.”*

learning (DEML) approach to estimate the daily mean PM,
concentrations in each global grid cell (0-1° x 0-1° spatial
resolution) for 20 years with use of ground-based PM, data
from 5446 monitoring stations in 65 countries worldwide,
combined with GEOS-Chem chemical transport model
simulations, meteorological data, and geographical
information on a global scale. Based on modelled estimates,
only 0-001% of the global population was exposed to PM,, at
concentrations lower than the WHO annual limit (5 pg/m?),
and more than 70% of days of the year globally had a PM,
concentration exceeding the WHO daily limit (15 pg/m?) in
2019.

Implications of all the available evidence

Our grid-based daily PM, , estimates could fill knowledge gaps
with regard to the assessment of global PM,-attributable
health burden and both short-term and long-term health
effects, especially for areas where monitoring station data are
not available. The study results offer a novel global perspective
of daily spatiotemporal variations in exposure of the global
population to ambient PM, .. Additionally, the DEML approach
achieved good performance in estimating global air pollution
concentrations.

The deep ensemble machine learning (DEML) framework
is a multilevel stacked ensemble machine learning
algorithm that combines the advantages of several diverse
base models and meta models to achieve an optimal
prediction performance.” Our previous study indicated the
advantages of DEML modelling in environmental exposure
assessment.” In this study, we used a DEML model to
assess the global daily PM, , distribution at high spatial
resolution (0-1°x0-1°) from 2000 to 2019. We also
investigated regional and national population-weighted
PM, concentrations and population-weighted exposed
days at PM, ; concentration higher than the 2021 WHO
daily limit (15 pg/m3) to identify the spatiotemporal
exposure distribution from 2000 to 2019.

Methods

Overview and data sources

In this modelling study, we utilised a DEML framework by
integrating ground monitoring measurements of PM, ;,
chemical transport model simulations of all-source PM,
concentrations, meteorological conditions, and geograph-
ical features. All data used in the modelling were for the
period between Jan 1, 2000, and Dec 31, 2019.

Daily mean (24-h) concentrations of PM, ; recorded by
government air quality monitoring stations in 2000-19
were obtained from multiple sources, including the
national environmental protection agencies of the USA
and China, the European Environmental Agency, and
Australian state and territory government agencies.”®
Details on the air quality station data sources are provided
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in the appendix (p 4). Figure 1 shows the spatial
distribution of the included 5446 monitoring stations in
65 countries. These countries covered 73% of the global
population in 2019 according to WorldPop data, and
56% of the global land area in 2019 according to land
cover data from the MCD12Q1.061 product. A summary
of the sampled monitoring stations by country is
presented in the appendix (pp 6-7).

We extracted simulations of global daily all-source PM, ;
concentrations for the study period by using a three-
dimensional (3D) GEOS-Chem chemical transport model
(version 12.0.0) at a spatial resolution of 2-0°x2-5° as
described by Yue and colleagues.” Further details on the
data sources for the GEOS-Chem model are provided in
the appendix (p 1).

Satellite-based meteorological data with a spatial
resolution of 0-1°x0-1° were collected from the ERAS
dataset (the fifth-generation European Centre for
Medium-Range Weather Forecasts reanalysis set)®
through the Google Earth Engine platform. For the study
period, we collected ambient temperature, ambient dew
point temperature (at 2 m above the land surface), wind
speed at 10 m height above sea level, surface pressure,
surface solar radiation, total precipitation, and total
evaporation. All were collected as hourly measurements
for the period under study. Daily mean data were
calculated as an average of 24 h of observations, starting
each day from 12 noon. Daily relative humidity was
calculated with an algorithm in the humidity package” in
R (version 0.1.5) on the basis of daily mean ambient
temperature and dew point temperature.

Satellite-based annual land cover data with a spatial
resolution of 500 m were obtained from the MCD12Q1.061
product through the Google Earth Engine platform.
Satellite-based annual digital elevation data with a spatial
resolution of 90 m were extracted from the Shuttle Radar
Topography Mission project. Global annual population
counts at 1 km spatial resolution were obtained from the
WorldPop platform.

All data variables and sources are summarised in the
appendix (pp 4-5). Bilinear interpolation was used to
upscale the GEOS-Chem simulations, land cover, ground
elevation, and population density to 0-1°x0-1° spatial
resolution for further grid cell estimation.? Missing
values in the collected datasets were excluded in the
analysis to avoid the potential bias introduced by
imputation. For ground measurements of PM,,, we
removed extreme outliers higher than the 99 - 9th quantiles
of the total dataset, and removed unsuitable data obtained
from six stations in central eastern Asia (Kazakhstan,
n=1; Uzbekistan, n=1; Tajikistan, n=2; and Afghanistan,
n=2) due to data being constantly or extremely high.

Statistical analysis

We estimated global daily PM, ; concentration using the
DEML framework,” which has a three-stage structure. At
the first stage, three base models (random forest, light
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Figure 1: Global monitor station distribution and mean annual PM, , concentration over two decades

(2000-19)

gradient boosting machine [LightGBM], and extreme
gradient boosting [XGboost])” were used to generate new
PM, , concentration data. At the second stage, two meta-
models (random forest and generalised linear model)*
were used to estimate daily PM, ; concentrations with the
predictions from the first-stage models. At the third stage,
anon-negative least squares algorithm was used to obtain
optimal weights for PM,, estimations. Details of the
DEML framework are presented in the appendix (pp 1-2).

Spatiotemporal generalisation and reliability of the
DEML framework were evaluated by a series of cross-
validations, including a general 10-fold cross-validation,
spatial cross-validations (based on monitor station
sampling and grid cell sampling), a continent-stratified
cluster cross-validation, and a temporal cross-validation by
year. Details on the cross-validation strategies are provided
in the appendix (p 3). Root mean square error (RMSE),
mean absolute error, and coefficients of determination
(R2) were used to assess the prediction performance of the
DEML model. Benchmark machine learning models
(random forest, LightGBM, and XGboost) were used to
compare the performance of DEML.

For observed and estimated daily values, we present
both mean (SD), median (IQR), and range. We calculated
the monthly and annual mean values (from daily mean
values in each calendar month or year) for observed and
predicted PM, ; concentration and used density scatter
plots to assess DEML performance for the daily, monthly,
and annual mean PM, ; estimations in the study period.
Spearman’s correlation analysis was used to compare
consistency between the DEML-estimated and observed
daily mean PM,; concentrations at the global and
regional levels. We also compared the variability in
temporal trends of observed and predicted daily mean
PM, ; in eight metropolises (Beijing, China; Deli, India;
Ho Chi Minh, Viet Nam; Milan, Italy; New York, NY,
USA; Sao Paolo, Brazil; Sydney, NSW, Australia; and
Toronto, ON, Canada), which were selected as being
regionally representative and for comparison with

See Online for appendix

For WorldPop see https://hub.
worldpop.org/

For the MCD12Q1.061 product
see https://developers.google.
com/earth-engine/datasets/
catalog/MODIS_061_
MCD12Q1#description

For the GEOS-Chem chemical
transport model see https://
geos-chem.seas.harvard.edu/

For the ERAS dataset see

https://developers.google.com/
earth-engine/datasets/catalog/
ECMWF_ERA5_LAND_HOURLY

For the Shuttle Radar
Topography Mission project
see https://bigdata.cgiar.org/
srtm-90m-digital-elevation-
database/
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Figure 2: Comparison between observed and model-estimated PM, ;concentrations in 2000-19
The x-axis indicates observed mean PM, in the monitor stations; the y-axis indicates estimated mean PM, , by the deep ensemble machine learning model in 10-fold cross-validation analysis; the
points represent the corresponding PM, , for both observed and predicted values. There are 9289 613 datapoints for daily PM,, 434122 for monthly PM, , and 38 488 for annual PM,; the red line
represents a regression line (simple linear regression) for the observed and predicted PM, .. R*=coefficient of determination for the unseen independent data in 10-fold cross-validation analysis.

RMSE=root mean square error.

For the country and regional
classifications of the UN
Statistics Division see https://
unstats.un.org/unsd/
methodology/m49/

For The World Bank income
classification see https://
datahelpdesk worldbank.org/
knowledgebase/articles/906519-
world-bank-country-and-
lending-groups
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previous studies. Overall averages for the 20-year study
period were also calculated.

We assessed the global spatial distribution of PM, ; and
the spatiotemporal changes per decade. We presented the
global distribution of annual mean PM, ; in 2000, 2010,
and 2019, and measured the changes in annual mean
PM,, per decade by multiplying 10 years with the
coefficients of a linear regression model established from
20 annual mean PM, ; values for each global grid cell
(0-1°x0-1° spatial resolution). Additionally, the proportion
of global and regional land area exposure and population
exposure at the previous 2005 WHO limit (10 pg/m3) and
updated 2021 WHO limit (5 pg/m3) for annual mean
PM, , were assessed for the year 2019.

Population-weighted PM,; and population-weighted
exposed days, when daily PM, ; concentration was higher
than the 2021 WHO-recommended limit (15 pg/ms3),
were identified to indicate both the levels of air pollution
and the size of the affected population in each region.
Regional mean population-weighted PM, ; concentrations
were identified as:

Population —weighted concentration =Y&xC)

Where C; denotes the daily mean PM, ; concentration and
pithe annual mean population in a specific grid cell, i; and,
P=Yypi, which is the total population of grid cells in
a specified region. Regional population-weighted exposed
days (PM, ; >15 pg/m3) were identified as:

Population —weighted exposed days =EZl§ngJ
Where D, is a Boolean value, indicating whether daily

mean PM,  in a specific j day of a year in a grid cell i was
higher than 15 pg/m3 (D;=1) or not (D,;=0). This indicator

can be used to quantify the average exposed days to
concentrations higher than the WHO guideline limit for
the population in a specified region. Study regions were
based on the country and regional groupings of the UN
Statistics Division, and we provide estimates for
175 countries. The annual mean population-weighted
PM,. concentrations and annual accumulation of
population-weighted exposed days at the global and
regional levels were used to assess global and regional
PM,; exposure in 2000, 2010, and 2019. Countries
with the highest exposures were ranked and labelled
by income group (2019 World Bank classification). To
investigate seasonal patterns, PM,, concentrations for
each calendar month were averaged across the 20-year
period for each global grid cell. We also assessed mean
population-weighted PM, ; values for each calendar month
over the 20 years at the global population level and in eight
specific countries (Australia, Brazil, China, India, South
Africa, Thailand, the UK, and the USA), which were
selected as regionally representative countries and for
comparison with previous studies.

Role of the funding source

The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.

Results

Globally, across 175 countries, the mean annual
population-weighted PM, ; concentration for the period
2000-19 was estimated at 32-8 pg/m3 (SD 0-6). When
estimating mean annual exposure across regions, the
highest population-weighted PM, ; concentrations were
distributed in eastern Asia (50-0 pg/m3 [SD 2-2]) and
southern Asia (37-2 pg/m3 [1-2]), followed by northern
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Figure 3: Annual mean PM,; in 2000, 2010, and 2019 and changes in annual mean PM,  per decade at 0-1° x 0-1° spatial resolution
The change in annual PM, ; per decade was calculated by multiplying 10 years with the coefficients of a linear regression model established from 20 annual mean PM,  values for each global grid cell.

Africa (30-1 pg/m3 [0-7]). Australia and New Zealand
(8-5 pg/m3[0-9]), other regions in Oceania (12-6 pg/ms3
[0-5]), and southern America (15-6 pg/m3 [0-3]) had the
lowest annual population-weighted PM, ; concentrations
(appendix p 8). We observed the highest correlation
between estimated and observed daily mean PM, in
eastern Asia (Spearman’s r=0-87) and western Europe
(=0-82), and the lowest correlation in Australia and
New Zealand (r=0-59). Estimated global daily mean
PM,; concentrations had high correlation with the
observed global mean (r=0-91; appendix p 9). The
temporal trends between observed and predicted daily
PM,; in eight metropolises are presented in the
appendix (p 21).

Observed and DEML-predicted PM, concentrations
were compared (figure 2). DEML could accurately
capture the global variability in ground-measured daily
mean PM, ; with a 10-fold cross-validation R2 of 0-91 and
RMSE of 7-86 pg/m3, and with a cross-validation R2
of 0-96 (RMSE 3-78 pg/m3) for monthly mean PM,
and 0-98 (2-64 pg/m3) for annual mean PM, ;. Results of
other spatiotemporal cross-validations also indicated
robust model performances (appendix pp 10-13).
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We presented the spatial distribution of estimated
annual mean PM,, in 2000, 2010, and 2019 and
spatiotemporal changes per decade in 2000-19 (figure 3).
Despite large differences between regions in PM,
concentrations, most areas with high PM, ; were in eastern
Asia, southern Asia, and northern Africa. Most areas in
Asia, northern and sub-Saharan Africa, Oceania, and
Latin America and the Caribbean had increases
in PM,, concentrations during the 20 years, while
decreases were estimated in Europe, some regions of
northern America, and some regions of Africa (figure 3).
Based on the 2005 WHO guideline limit,* 29-4% of the
global land area and 1-8% of the global population were
exposed to an annual mean concentration of PM, ; lower
than 10 pg/m3 in 2019. When restricting to the 2021 WHO
guideline value of 5 pg/m3, only 0-18% of the global land
area and 0-001% of the global population remained at an
annual exposure lower than the guideline limit in 2019.
Regional land area exposures and population exposures
in 2019 are provided in the appendix (pp 14-15).

We assessed temporal changes in estimated annual
mean population-weighted PM, ; concentration and the
proportion of annual population-weighted exposed days
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Figure 4: Changes in annual mean population-weighted PM, ; concentration and annual population-weighted exposed days by region in 2000, 2010, and 2019
The bar chart shows the proportion of population-weighted exposed days with PM, concentrations higher than the 2021 WHO air quality guideline limit (15 ug/m?®) in a year. Datapoints and
connecting lines show the annual mean population-weighted PM, concentrations; error bars show standard deviation.
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(PM,.; >15 pg/m3) in 2000, 2010, and 2019 (figure 4).
Globally, we observed similar annual mean population-
weighted PM, ; at each timepoint, from 31-6 pg/m3
(SD 10-5) in 2000, to 33-0 pg/m3 (10-3) in 2010,
to 32-3 pg/m3 (10-1) in 2019 (figure 4). Geographically,
population-weighted PM, ; concentration and annual
population-weighted exposed days in Europe and
northern America decreased over the two decades,
whereas exposures increased in southern Asia,
Australia and New Zealand, and Latin America and the
Caribbean. Despite a slight decrease in population-
weighted exposed days globally, by 2019 more than 70%
of days still had PM, concentrations higher than
the 2021 WHO daily limit (15 pg/m3). In southern Asia
and eastern Asia, more than 90% of days in 2000, 2010,
and 2019 had daily PM, concentrations higher than

15 pg/m3 (figure 4). Oceania, especially Australia and
New Zealand, had a marked increase in the number of
days with high PM, ; concentrations in 2019. Trends in
annual mean population-weighted concentrations by
continent are presented in the appendix (p 22).

We ranked countries with the highest estimates of
population-weighted PM, ; exposure and exposed days
above 15 pg/m3 PM, ; in 2000, 2010, and 2019 (figure 5).
Despite a decrease in estimated PM, ; exposure between
2010 and 2019, China ranked first for annual mean
population-weighted PM, concentration at all three
timepoints. Additionally, increased country rank in the
past two decades according to annual mean population-
weighted PM, ; concentration was observed in southern
Asian countries such as Bangladesh (from 11th in 2000
to 3rd in 2019), India (from 15th to 8th), and
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Figure 5: Leading countries for annual mean population-weighted PM, concentration and population-weighted exposed days in 2000, 2010, and 2019
Values in parentheses are standard deviation (for PM, concentration) or % (for proportion of days out of 365). The 2021 WHO air quality guideline limit for daily
PM,, (15 pg/m?) was the threshold for population-weighted exposed days. Income categories are based on The World Bank classifications for the year 2019.

Pakistan (from 14th to 9th). For annual population-
weighted exposed days, all countries ranked within the
top 10 in 2000, 2010, and 2019 had more than 90% of
days of the year exceeding 15 pg/m3, including several
high-income countries such as Singapore and Qatar
in 2010 and 2019, and South Korea in 2000 and 2010.
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Estimates of annual mean population-weighted PM, ;
and annual population-weighted exposed days in
2000, 2010, and 2019 by all countries and regions are
listed in the appendix (pp 16-20).

Seasonal patterns in estimated PM, ; concentrations
for the 20-year period were investigated (figure 6). The
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Figure 6: Global mean PM,; concentrations for each calendar month in 2000-19 at 0-1°x 0-1° spatial resolution

Estimated daily mean PM, ; values were used to calculate mean PM, for each calendar month, and the monthly mean values were averaged over the 20 years.
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estimates of PM, ; showed marked seasonal variations
across particular regions and countries. For example,
northeast China and north India had high
PM, concentrations during their winter months
(December, January, and February), whereas eastern
areas in northern America had high PM,, in its
summer months (June, July, and August). Relatively
high PM,, air pollution was observed in August
and September in South America and from June to
September in sub-Saharan Africa. Seasonal patterns for
eight national distributions are presented in the
appendix (p 23).

Discussion

Our grid-based daily PM, ; estimates provide the first
global perspective on the spatial and temporal variations
of population exposure in 2000-19. We implemented
a validated DEML model on the basis of PM, ; data from
5446 monitoring stations in 65 countries worldwide,
combined with chemical transport model simulations,
meteorological conditions, and other geographical
information, and achieved strong model performance.
Consistent with previous studies,** our results
for eastern and southern Asia indicated the highest
PM,, concentrations. Additionally, the estimates
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of PM, showed distinct seasonal patterns in many
regions of the world.

In this study, the innovative DEML approach to
estimate daily PM,, concentrations attained high
prediction accuracy. Global estimation of PM,;
concentrations has been described in many previous
modelling studies.**** An estimation of global daily
PM, ; concentration in 1997-2014 used remote sensing
and meteorological data, and ground-based observations
of PM,; in 55 countries, to train a machine learning
algorithm, achieving a correlation coefficient for each
independent validation dataset of 0-52-0-75.> Similarly,
other studies have measured global monthly and annual
mean PM, ; exposure. Hammer and colleagues® assessed
global estimates of annual mean PM, ; concentrations in
1998-2018 with data from satellite observations,
a chemical transport model, and ground-based
monitoring, obtaining an R2 of 0-90-0-92. Shaddick and
colleagues® used a Bayesian hierarchical model with
multiple data integration to estimate the global annual
mean PM, exposures in 2014 with an R2 of 0-91
However, comparisons  with  previous  global
PM, estimation studies are restricted given that few
studies estimated the global daily (short-term) PM,
exposure, and further comparison analyses are required.

Although ambient PM, ; concentrations vary substan-
tially across the world, few global land areas and
populations are exposed to PM, ; at concentrations lower
than the 2021 WHO guideline limit.’ Based on modelled
estimates for 2019, we found that 0-18% of the global
land area and 0-001% of the global population had an
annual exposure to PM, ; lower than the WHO limit of
5 pg/m3, and more than 70% of days in the year, even in
some high-income countries such as Singapore and
Qatar, had a daily mean PM, ; exposure above 15 pg/ms3.
Additionally, the high spatiotemporal global PM,
estimates provide valuable air pollution information for
areas not covered by monitoring stations. For example,
we observed a notable seasonal trend with regularly high
regional PM, ; concentrations in August and September
in the Amazon rainforest region, where monitoring
stations are scarce.

The spatiotemporal variations in PM, ; concentrations
might be the result of different types and components of
anthropogenic fuel combustion emissions” and the
changes in natural sources due to extreme weather
events such as bushfires and windblown dust.*® For
example, northeast China had increased estimated
PM, ; concentrations in winter, which might stem from
conducive weather patterns® and winter heating-related
fossil fuel combustion,”® whereas southern American
countries such as Brazil had increased estimated PM,
concentrations in August and September, which might
be associated with anthropogenic emissions such as
slash-and-burn cultivation.” By contrast, the increasing
frequency and scale of climate change-related air
pollution events, such as windblown dust and bushfire
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events in 2019, might have contributed to the elevated
PM,  concentrations in south-eastern Australia in 2019.%

This study has several limitations. Despite conducting
spatial and temporal cross-validations to test the
robustness of estimations with stable results, biases
might exist in the DEML model due to the sparse ground
station distribution in most regions, limited availability
of station data before 2014, and uncertainties from some
predictors, such as the fixed anthropogenic emissions
assumption in the chemical transport model data
after 2013. In areas with few monitoring stations, the
estimates should be interpreted with caution because our
model predictions in these areas were only validated
by a small number of monitoring stations, and the air
quality records from these location-based ground stations
are not representative of overall exposure variations
across a wide region. In addition, despite a high spatial
resolution, uncertainties exist in the aggregation of
gridded estimates and calculation of population-weighted
exposure and exposed days. Our study also cannot
account for personal exposure, and assuming equivalent
population exposures within each grid cell might lead to
exposure misclassification due to population migration
and different activity patterns and behaviours, such as
time spent indoors and outdoors.

This study is the first to apply an innovative DEML
approach to estimate high-resolution global daily PM, ,
exposure over two decades. Our DEML model showed
accurate performance in predicting global and regional
short-term and long-term PM,; concentrations, and
provided a global perspective on the spatial and temporal
variations of PM, ; concentrations between 2000 and 2019.
The results highlight the inequality of global air pollution
population exposure, particularly in southern and eastern
Asia. Our findings are of importance for global air
pollution mitigation strategies and for assessing the
short-term and long-term health effects of global PM, ;
exposure.
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