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Yuming Guo

Summary
Background Short-term exposure to ambient PM2·5 is a leading contributor to the global burden of diseases and 
mortality. However, few studies have provided the global spatiotemporal variations of daily PM2·5 concentrations over 
recent decades.

Methods In this modelling study, we implemented deep ensemble machine learning (DEML) to estimate global daily 
ambient PM2·5 concentrations at 0·1° × 0·1° spatial resolution between Jan 1, 2000, and Dec 31, 2019. In the DEML 
framework, ground-based PM2·5 measurements from 5446 monitoring stations in 65 countries worldwide were 
combined with GEOS-Chem chemical transport model simulations of PM2·5 concentration, meteorological data, and 
geographical features. At the global and regional levels, we investigated annual population-weighted PM2·5 
concentrations and annual population-weighted exposed days to PM2·5 concentrations higher than 15 µg/m³ 
(2021 WHO daily limit) to assess spatiotemporal exposure in 2000, 2010, and 2019. Land area and population 
exposures to PM2·5 above 5 µg/m³ (2021 WHO annual limit) were also assessed for the year 2019. PM2·5 concentrations 
for each calendar month were averaged across the 20-year period to investigate global seasonal patterns.

Findings Our DEML model showed good performance in capturing the global variability in ground-measured daily 
PM2·5, with a cross-validation R² of 0·91 and root mean square error of 7·86 µg/m³. Globally, across 175 countries, the 
mean annual population-weighted PM2·5 concentration for the period 2000–19 was estimated at 32·8 µg/m³ (SD 0·6). 
During the two decades, population-weighted PM2·5 concentration and annual population-weighted exposed days 
(PM2·5 >15 µg/m³) decreased in Europe and northern America, whereas exposures increased in southern Asia, 
Australia and New Zealand, and Latin America and the Caribbean. In 2019, only 0·18% of the global land area 
and 0·001% of the global population had an annual exposure to PM2·5 at concentrations lower than 5 µg/m³, with 
more than 70% of days having daily PM2·5 concentrations higher than 15 µg/m³. Distinct seasonal patterns were 
indicated in many regions of the world.

Interpretation The high-resolution estimates of daily PM2·5 provide the first global view of the unequal spatiotemporal 
distribution of PM2·5 exposure for a recent 20-year period, which is of value for assessing short-term and long-term 
health effects of PM2·5, especially for areas where monitoring station data are not available.
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Introduction
Fine particulate matter (PM2·5) is a leading risk factor 
for premature mortality and morbidity worldwide. 
According to a Global Burden of Disease Study, outdoor 
air pollution (including ambient particulate matter) 
was estimated to cause 6·67 million premature deaths 
in 2019.1 In addition, no safe threshold for PM2·5 has 
been identified below which no damage to health is 
observed.2,3 An abundance of evidence has supported 
the adverse effects of short-term and long-term ambient 
PM2·5 exposure on human health, even at low PM2·5 
concentrations.4 Therefore, the latest version of the 
WHO global air quality guidelines published in 2021 
has adjusted the recommended limit for outdoor PM2·5 

exposure from 10 µg/m³ to 5 µg/m³ for the annual 
mean exposure and from 25 µg/m³ to 15 µg/m³ for 
24-h mean exposure.5

Estimates of global PM2·5 concentrations are a pre
requisite for health risk assessments of global air pollution. 
Despite global expansion of the ground-based PM2·5 
monitoring network (an example of which is the WHO 
ambient air pollution database), the frequently sparse 
spread and poor homogeneity in the distribution of 
monitoring stations make accurate measurement of 
global PM2·5 exposure challenging. Fortunately, with 
improvement of statistical and machine learning methods, 
the combination of emerging satellite products, chemical 
transport model simulations, and ground monitor 
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expansion offers novel opportunities to accurately assess 
PM2·5 concentrations globally.6–8 Global PM2·5 estimation 
studies have typically focused on long-term (annual or 
monthly average) PM2·5 estimates,7,8 whereas few studies 
have explored the short-term (from hours to days) exposure 
to PM2·5 concentrations at a global level.9 Although 
increasing numbers of studies have estimated daily PM2·5 
concentrations at national and regional levels, such as in 
China,10 Europe,11 and the USA,12 few studies have assessed 
short-term PM2·5 exposure and its spatiotemporal 
variations at the global level. The absence of uniformity in 
global training data and inconsistency in estimation 
methods create difficulties in comparing the previous 
regional estimates and in providing a global view of the 
spatiotemporal distribution in PM2·5 exposure. Therefore, 
estimating global daily PM2·5 concentration and its 
spatiotemporal variations with unified study designs, 
modelling approaches, and data sources is warranted.

Machine learning algorithms, especially ensemble 
machine learning technologies, have proven to be promis
ingly efficient for geospatial air pollution prediction13 and 
have been increasingly applied in the estimation of PM2·5 
concentration, offering high accuracy and the ability to 
handle large numbers of features with nonlinear asso
ciations.10 Ensemble learning algorithms use a collection of 
multiple machine learning algorithms to achieve an 
optimal combination of predictions.14 Multiple studies 
have indicated that ensemble machine learning could 
provide better estimations in environmental exposure 
assessment than a single machine learning model alone.15,16 

The deep ensemble machine learning (DEML) framework 
is a multilevel stacked ensemble machine learning 
algorithm that combines the advantages of several diverse 
base models and meta models to achieve an optimal 
prediction performance.17 Our previous study indicated the 
advantages of DEML modelling in environmental exposure 
assessment.17 In this study, we used a DEML model to 
assess the global daily PM2·5 distribution at high spatial 
resolution (0·1° × 0·1°) from 2000 to 2019. We also 
investigated regional and national population-weighted 
PM2·5 concentrations and population-weighted exposed 
days at PM2·5 concentration higher than the 2021 WHO 
daily limit (15 µg/m³) to identify the spatiotemporal 
exposure distribution from 2000 to 2019.

Methods
Overview and data sources
In this modelling study, we utilised a DEML framework by 
integrating ground monitoring measurements of PM2·5, 
chemical transport model simulations of all-source PM2·5 
concentrations, meteorological conditions, and geograph
ical features. All data used in the modelling were for the 
period between Jan 1, 2000, and Dec 31, 2019.

Daily mean (24-h) concentrations of PM2·5 recorded by 
government air quality monitoring stations in 2000–19 
were obtained from multiple sources, including the 
national environmental protection agencies of the USA 
and China, the European Environmental Agency, and 
Australian state and territory government agencies.18  
Details on the air quality station data sources are provided 

Research in context

Evidence before this study
Assessing the disparities in global exposure to PM2·5 is crucial 
for population health risk assessment. However, little is 
known about the global short-term (daily) PM2·5 exposure and 
its spatiotemporal variations. We searched PubMed and 
Google Scholar for articles in English published between 
Jan 1, 2011, and Dec 31, 2021, with the terms “fine particulate 
matter”, “PM2·5”, “global estimate”, and “short-term daily 
exposure”. We found that most previous studies estimated 
daily average PM2·5 distribution at the city or national levels. 
Several studies have estimated global long-term trends in 
PM2·5 concentrations, but few articles have reported daily 
PM2·5 distribution worldwide. One article investigated the 
global daily PM2·5 distribution from 1997 to 2014; however, 
it did not explore the inequality and spatiotemporal changes 
in daily PM2·5 population exposure over decades.

Added value of this study
Our study provides a global perspective on the spatial and 
temporal distribution of daily PM2·5 concentrations in 
2000–19 and assesses the inequalities in global population 
exposure on the basis of the new PM2·5 limits in the 2021 WHO 
air quality guidelines. We used a deep ensemble machine 

learning (DEML) approach to estimate the daily mean PM2·5 
concentrations in each global grid cell (0·1° × 0·1° spatial 
resolution) for 20 years with use of ground-based PM2·5 data 
from 5446 monitoring stations in 65 countries worldwide, 
combined with GEOS-Chem chemical transport model 
simulations, meteorological data, and geographical 
information on a global scale. Based on modelled estimates, 
only 0·001% of the global population was exposed to PM2·5 at 
concentrations lower than the WHO annual limit (5 µg/m³), 
and more than 70% of days of the year globally had a PM2·5 
concentration exceeding the WHO daily limit (15 µg/m³) in 
2019.

Implications of all the available evidence
Our grid-based daily PM2·5 estimates could fill knowledge gaps 
with regard to the assessment of global PM2·5-attributable 
health burden and both short-term and long-term health 
effects, especially for areas where monitoring station data are 
not available. The study results offer a novel global perspective 
of daily spatiotemporal variations in exposure of the global 
population to ambient PM2·5. Additionally, the DEML approach 
achieved good performance in estimating global air pollution 
concentrations.

For the US Environmental 
Protection Agency air data see 

https://aqs.epa.gov/aqsweb/
airdata/download_files.html

For the China National 
Environmental Monitoring 

Centre see http://www.cnemc.
cn/en/

For the European 
Environmental Agency air 

quality database see https://
www.eea.europa.eu/data-and-

maps/data/aqereporting-9

For the Australian National Air 
Pollution Monitor Database 

see https://osf.io/jxd98/
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https://aqs.epa.gov/aqsweb/airdata/download_files.html
https://aqs.epa.gov/aqsweb/airdata/download_files.html
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https://osf.io/jxd98/
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in the appendix (p 4). Figure 1 shows the spatial 
distribution of the included 5446 monitoring stations in 
65 countries. These countries covered 73% of the global 
population in 2019 according to WorldPop data, and 
56% of the global land area in 2019 according to land 
cover data from the MCD12Q1.061 product. A summary 
of the sampled monitoring stations by country is 
presented in the appendix (pp 6–7).

We extracted simulations of global daily all-source PM2·5 
concentrations for the study period by using a three-
dimensional (3D) GEOS-Chem chemical transport model 
(version 12.0.0) at a spatial resolution of 2·0° × 2·5° as 
described by Yue and colleagues.19 Further details on the 
data sources for the GEOS-Chem model are provided in 
the appendix (p 1).

Satellite-based meteorological data with a spatial 
resolution of 0·1° × 0·1° were collected from the ERA5 
dataset (the fifth-generation European Centre for 
Medium-Range Weather Forecasts reanalysis set)20 
through the Google Earth Engine platform. For the study 
period, we collected ambient temperature, ambient dew 
point temperature (at 2 m above the land surface), wind 
speed at 10 m height above sea level, surface pressure, 
surface solar radiation, total precipitation, and total 
evaporation. All were collected as hourly measurements 
for the period under study. Daily mean data were 
calculated as an average of 24 h of observations, starting 
each day from 12 noon. Daily relative humidity was 
calculated with an algorithm in the humidity package21 in 
R (version 0.1.5) on the basis of daily mean ambient 
temperature and dew point temperature.

Satellite-based annual land cover data with a spatial 
resolution of 500 m were obtained from the MCD12Q1.061 
product through the Google Earth Engine platform. 
Satellite-based annual digital elevation data with a spatial 
resolution of 90 m were extracted from the Shuttle Radar 
Topography Mission project. Global annual population 
counts at 1 km spatial resolution were obtained from the 
WorldPop platform.

All data variables and sources are summarised in the 
appendix (pp 4–5). Bilinear interpolation was used to 
upscale the GEOS-Chem simulations, land cover, ground 
elevation, and population density to 0·1° × 0·1° spatial 
resolution for further grid cell estimation.22 Missing 
values in the collected datasets were excluded in the 
analysis to avoid the potential bias introduced by 
imputation. For ground measurements of PM2·5, we 
removed extreme outliers higher than the 99·9th quantiles 
of the total dataset, and removed unsuitable data obtained 
from six stations in central eastern Asia (Kazakhstan, 
n=1; Uzbekistan, n=1; Tajikistan, n=2; and Afghanistan, 
n=2) due to data being constantly or extremely high.

Statistical analysis
We estimated global daily PM2·5 concentration using the 
DEML framework,17 which has a three-stage structure. At 
the first stage, three base models (random forest, light 

gradient boosting machine [LightGBM], and extreme 
gradient boosting [XGboost])23 were used to generate new 
PM2·5 concentration data. At the second stage, two meta-
models (random forest and generalised linear model)23 
were used to estimate daily PM2·5 concentrations with the 
predictions from the first-stage models. At the third stage, 
a non-negative least squares algorithm was used to obtain 
optimal weights for PM2·5 estimations. Details of the 
DEML framework are presented in the appendix (pp 1–2).

Spatiotemporal generalisation and reliability of the 
DEML framework were evaluated by a series of cross-
validations, including a general 10-fold cross-validation, 
spatial cross-validations (based on monitor station 
sampling and grid cell sampling), a continent-stratified 
cluster cross-validation, and a temporal cross-validation by 
year. Details on the cross-validation strategies are provided 
in the appendix (p 3). Root mean square error (RMSE), 
mean absolute error, and coefficients of determination 
(R²) were used to assess the prediction performance of the 
DEML model. Benchmark machine learning models 
(random forest, LightGBM, and XGboost) were used to 
compare the performance of DEML. 

For observed and estimated daily values, we present 
both mean (SD), median (IQR), and range. We calculated 
the monthly and annual mean values (from daily mean 
values in each calendar month or year) for observed and 
predicted PM2·5 concentration and used density scatter 
plots to assess DEML performance for the daily, monthly, 
and annual mean PM2·5 estimations in the study period. 
Spearman’s correlation analysis was used to compare 
consistency between the DEML-estimated and observed 
daily mean PM2·5 concentrations at the global and 
regional levels. We also compared the variability in 
temporal trends of observed and predicted daily mean 
PM2·5 in eight metropolises (Beijing, China; Deli, India; 
Ho Chi Minh, Viet Nam; Milan, Italy; New York, NY, 
USA; Sao Paolo, Brazil; Sydney, NSW, Australia; and 
Toronto, ON, Canada), which were selected as being 
regionally representative and for comparison with 

Figure 1: Global monitor station distribution and mean annual PM2·5 concentration over two decades 
(2000–19)
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For the Shuttle Radar 
Topography Mission project 
see https://bigdata.cgiar.org/
srtm-90m-digital-elevation-
database/

See Online for appendix

For WorldPop see https://hub.
worldpop.org/

For the MCD12Q1.061 product 
see https://developers.google.
com/earth-engine/datasets/
catalog/MODIS_061_
MCD12Q1#description

For the GEOS-Chem chemical 
transport model see https://
geos-chem.seas.harvard.edu/

For the ERA5 dataset see 
https://developers.google.com/
earth-engine/datasets/catalog/
ECMWF_ERA5_LAND_HOURLY
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previous studies. Overall averages for the 20-year study 
period were also calculated.

We assessed the global spatial distribution of PM2·5 and 
the spatiotemporal changes per decade. We presented the 
global distribution of annual mean PM2·5 in 2000, 2010, 
and 2019, and measured the changes in annual mean 
PM2·5 per decade by multiplying 10 years with the 
coefficients of a linear regression model established from 
20 annual mean PM2·5 values for each global grid cell 
(0·1° × 0·1° spatial resolution). Additionally, the proportion 
of global and regional land area exposure and population 
exposure at the previous 2005 WHO limit (10 µg/m³) and 
updated 2021 WHO limit (5 µg/m³) for annual mean 
PM2·5 were assessed for the year 2019.  

Population-weighted PM2·5 and population-weighted 
exposed days, when daily PM2·5 concentration was higher 
than the 2021 WHO-recommended limit (15 µg/m³), 
were identified to indicate both the levels of air pollution 
and the size of the affected population in each region. 
Regional mean population-weighted PM2·5 concentrations 
were identified as:

Where Ci denotes the daily mean PM2·5 concentration and 
pi the annual mean population in a specific grid cell, i; and, 
P=∑pi, which is the total population of grid cells in 
a specified region. Regional population-weighted exposed 
days (PM2·5 >15 µg/m³) were identified as:

Where Dij is a Boolean value, indicating whether daily 
mean PM2·5 in a specific j day of a year in a grid cell i was 
higher than 15 µg/m³ (Dij=1) or not (Dij=0). This indicator 

can be used to quantify the average exposed days to 
concentrations higher than the WHO guideline limit for 
the population in a specified region. Study regions were 
based on the country and regional groupings of the UN 
Statistics Division, and we provide estimates for 
175 countries. The annual mean population-weighted 
PM2·5 concentrations and annual accumulation of 
population-weighted exposed days at the global and 
regional levels were used to assess global and regional 
PM2·5 exposure in 2000, 2010, and 2019. Countries 
with the highest exposures were ranked and labelled 
by income group (2019 World Bank classification). To 
investigate seasonal patterns, PM2·5 concentrations for 
each calendar month were averaged across the 20-year 
period for each global grid cell. We also assessed mean 
population-weighted PM2·5 values for each calendar month 
over the 20 years at the global population level and in eight 
specific countries (Australia, Brazil, China, India, South 
Africa, Thailand, the UK, and the USA), which were 
selected as regionally representative countries and for 
comparison with previous studies.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
Globally, across 175 countries, the mean annual 
population-weighted PM2·5 concentration for the period 
2000–19 was estimated at 32·8 µg/m³ (SD 0·6). When 
estimating mean annual exposure across regions, the 
highest population-weighted PM2·5 concentrations were 
distributed in eastern Asia (50·0 µg/m³ [SD 2·2]) and 
southern Asia (37·2 µg/m³ [1·2]), followed by northern 

Population – weighted concentration =   Σ ×(pi
P ci)

ΣΣ ×(pi
P Dij)Population – weighted exposed days =   

j=1

365

For the country and regional 
classifications of the UN 

Statistics Division see https://
unstats.un.org/unsd/
methodology/m49/

Figure 2: Comparison between observed and model-estimated PM2·5 concentrations in 2000–19
The x-axis indicates observed mean PM2·5 in the monitor stations; the y-axis indicates estimated mean PM2·5 by the deep ensemble machine learning model in 10-fold cross-validation analysis; the 
points represent the corresponding PM2·5 for both observed and predicted values. There are 9 289 613 datapoints for daily PM2·5, 434 122 for monthly PM2·5, and 38 488 for annual PM2·5; the red line 
represents a regression line (simple linear regression) for the observed and predicted PM2·5. R²=coefficient of determination for the unseen independent data in 10-fold cross-validation analysis. 
RMSE=root mean square error.
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Africa (30·1 μg/m³ [0·7]). Australia and New Zealand 
(8·5 μg/m³ [0·9]), other regions in Oceania (12·6 μg/m³ 
[0·5]), and southern America (15·6 μg/m³ [0·3]) had the 
lowest annual population-weighted PM2·5 concentrations 
(appendix p 8). We observed the highest correlation 
between estimated and observed daily mean PM2·5 in 
eastern Asia (Spearman’s r=0·87) and western Europe 
(r=0·82), and the lowest correlation in Australia and 
New Zealand (r=0·59). Estimated global daily mean 
PM2·5 concentrations had high correlation with the 
observed global mean (r=0·91; appendix p 9). The 
temporal trends between observed and predicted daily 
PM2·5 in eight metropolises are presented in the 
appendix (p 21).

Observed and DEML-predicted PM2·5 concentrations 
were compared (figure 2). DEML could accurately 
capture the global variability in ground-measured daily 
mean PM2·5 with a 10-fold cross-validation R² of 0·91 and 
RMSE of 7·86 µg/m³, and with a cross-validation R² 
of 0·96 (RMSE 3·78 µg/m³) for monthly mean PM2·5 
and 0·98 (2·64 µg/m³) for annual mean PM2·5. Results of 
other spatiotemporal cross-validations also indicated 
robust model performances (appendix pp 10–13).

We presented the spatial distribution of estimated 
annual mean PM2·5 in 2000, 2010, and 2019 and 
spatiotemporal changes per decade in 2000–19 (figure 3). 
Despite large differences between regions in PM2·5 
concentrations, most areas with high PM2·5 were in eastern 
Asia, southern Asia, and northern Africa. Most areas in 
Asia, northern and sub-Saharan Africa, Oceania, and 
Latin America and the Caribbean had increases 
in PM2·5 concentrations during the 20 years, while 
decreases were estimated in Europe, some regions of 
northern America, and some regions of Africa (figure 3). 
Based on the 2005 WHO guideline limit,24 29·4% of the 
global land area and 1·8% of the global population were 
exposed to an annual mean concentration of PM2·5 lower 
than 10 µg/m³ in 2019. When restricting to the 2021 WHO 
guideline value of 5 µg/m³, only 0·18% of the global land 
area and 0·001% of the global population remained at an 
annual exposure lower than the guideline limit in 2019. 
Regional land area exposures and population exposures 
in 2019 are provided in the appendix (pp 14–15).

We assessed temporal changes in estimated annual 
mean population-weighted PM2·5 concentration and the 
proportion of annual population-weighted exposed days 

Figure 3: Annual mean PM2·5 in 2000, 2010, and 2019 and changes in annual mean PM2·5 per decade at 0·1° × 0·1° spatial resolution
The change in annual PM2·5 per decade was calculated by multiplying 10 years with the coefficients of a linear regression model established from 20 annual mean PM2·5 values for each global grid cell.
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(PM2·5 >15 µg/m³) in 2000, 2010, and 2019 (figure 4). 
Globally, we observed similar annual mean population-
weighted PM2·5 at each timepoint, from 31·6 µg/m³ 
(SD 10·5) in 2000, to 33·0 µg/m³ (10·3) in 2010, 
to 32·3 µg/m³ (10·1) in 2019 (figure 4). Geographically, 
population-weighted PM2·5 concentration and annual 
population-weighted exposed days in Europe and 
northern America decreased over the two decades, 
whereas exposures increased in southern Asia, 
Australia and New Zealand, and Latin America and the 
Caribbean. Despite a slight decrease in population-
weighted exposed days globally, by 2019 more than 70% 
of days still had PM2·5 concentrations higher than 
the 2021 WHO daily limit (15 µg/m³). In southern Asia 
and eastern Asia, more than 90% of days in 2000, 2010, 
and 2019 had daily PM2·5 concentrations higher than 

15  µg/m³ (figure 4). Oceania, especially Australia and 
New Zealand, had a marked increase in the number of 
days with high PM2·5 concentrations in 2019. Trends in 
annual mean population-weighted concentrations by 
continent are presented in the appendix (p 22).

We ranked countries with the highest estimates of 
population-weighted PM2·5 exposure and exposed days 
above 15 µg/m³ PM2·5 in 2000, 2010, and 2019 (figure 5). 
Despite a decrease in estimated PM2.5 exposure between 
2010 and 2019, China ranked first for annual mean 
population-weighted PM2·5 concentration at all three 
timepoints. Additionally, increased country rank in the 
past two decades according to annual mean population-
weighted PM2·5 concentration was observed in southern 
Asian countries such as Bangladesh (from 11th in 2000 
to 3rd in 2019), India (from 15th to 8th), and 

Figure 4: Changes in annual mean population-weighted PM2·5 concentration and annual population-weighted exposed days by region in 2000, 2010, and 2019
The bar chart shows the proportion of population-weighted exposed days with PM2·5 concentrations higher than the 2021 WHO air quality guideline limit (15 µg/m³) in a year. Datapoints and 
connecting lines show the annual mean population-weighted PM2·5 concentrations; error bars show standard deviation.
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Pakistan (from 14th to 9th). For annual population-
weighted exposed days, all countries ranked within the 
top 10 in 2000, 2010, and 2019 had more than 90% of 
days of the year exceeding 15 µg/m³, including several 
high-income countries such as Singapore and Qatar 
in 2010 and 2019, and South Korea in 2000 and 2010. 

Estimates of annual mean population-weighted PM2·5 
and annual population-weighted exposed days in 
2000, 2010, and 2019 by all countries and regions are 
listed in the appendix (pp 16–20).

Seasonal patterns in estimated PM2·5 concentrations 
for the 20-year period were investigated (figure 6). The 

Figure 5: Leading countries for annual mean population-weighted PM2·5 concentration and population-weighted exposed days in 2000, 2010, and 2019
Values in parentheses are standard deviation (for PM2·5 concentration) or % (for proportion of days out of 365). The 2021 WHO air quality guideline limit for daily 
PM2·5 (15 µg/m³) was the threshold for population-weighted exposed days. Income categories are based on The World Bank classifications for the year 2019.
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Leading countries in 2000 Leading countries in 2010 PM2·5PM2·5 Leading countries in 2019 PM2·5

1 China 48·6 (12·0) 1 China 52·5 (13·5) 1 China 49·4 (12·6)

2 Niger 45·3 (4·8) 2 North Korea 43·3 (3·1) 2 North Korea 44·1 (3·5)

3 Mauritania 45·3 (1·8) 3 Armenia 40·9 (3·8) 3 Bangladesh 42·1 (4·8)

4 North Korea 42·4 (3·0) 4 South Korea 40·1 (4·4) 4 Niger 40·9 (3·5)

5 South Korea 40·0 (4·1) 5 Niger 39·8 (3·1) 5 South Korea 40·3 (4·3)

6 Mali 39·3 (3·9) 6 Mauritania 39·3 (2·4) 6 Mauritania 39·9 (2·4)

7 Burkina Faso 38·7 (2·4) 7 Bangladesh 39·0 (4·4) 7 Armenia 39·5 (3·8)

8 Armenia 38·4 (3·7) 8 Pakistan 38·2 (4·3) 8 India 38·8 (7·4)

9 Nigeria 37·4 (4·9) 9 India 38·0 (7·3) 9 Pakistan 38·7 (5·1)

10 Western Sahara 37·3 (3·5) 10 Egypt 36·9 (3·0) 10 Egypt 37·9 (3·2)

11 Bangladesh 36·9 (3·4) 12 Mali 35·4 (4·9)

14 Pakistan 35·2 (3·4) 17 Burkina Faso 33·5 (2·6)

15 India 35·2 (5·9) 24 Nigeria 32·5 (4·6)

34 Egypt 30·9 (3·3) 43 Western Sahara 30·1 (3·4)

Annual population-weighted exposed days with PM2·5 >15 µg/m3
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4 Bangladesh 355 (97·0%) 4 Niger 352 (96·5%) 4 Niger 354 (97·1%)

5 China 354 (96·8%) 5 Nepal 351 (96·2%) 5 Bangladesh 354 (97·0%)

6 Nepal 351 (96·0%) 6 Egypt 351 (96·1%) 6 Rwanda 352 (96·4%)

7 India 351 (95·9%) 7 Bangladesh 348 (95·2%) 7 India 351 (96·1%)

8 South Korea 351 (95·8%) 8 India 347 (95·0%) 8 Nepal 349 (95·5%)

9 Burkina Faso 344 (94·0%) 9 Qatar 343 (93·8%) 9 Egypt 346 (94·8%)

10 Mali 344 (94·0%) 10 South Korea 337 (92·4%) 10 Mauritania 344 (94·3%)

15 Egypt 339 (92·5%) 14 Mauritania 333 (91·3%) 13 China 336 (92·0%)

17 Singapore 336 (91·9%) 30 Rwanda 314 (86·0%) 24 South Korea 319 (87·4%)

23 Qatar 326 (89·2%)
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estimates of PM2·5 showed marked seasonal variations 
across particular regions and countries. For example, 
northeast China and north India had high 
PM2·5 concentrations during their winter months 
(December, January, and February), whereas eastern 
areas in northern America had high PM2·5 in its 
summer months (June, July, and August). Relatively 
high PM2·5 air pollution was observed in August 
and September in South America and from June to 
September in sub-Saharan Africa. Seasonal patterns for 
eight national distributions are presented in the 
appendix (p 23).

Discussion
Our grid-based daily PM2·5 estimates provide the first 
global perspective on the spatial and temporal variations 
of population exposure in 2000–19. We implemented 
a validated DEML model on the basis of PM2·5 data from 
5446 monitoring stations in 65 countries worldwide, 
combined with chemical transport model simulations, 
meteorological conditions, and other geographical 
information, and achieved strong model performance. 
Consistent with previous studies,6,8,10 our results 
for eastern and southern Asia indicated the highest 
PM2·5 concentrations. Additionally, the estimates 

Figure 6: Global mean PM2·5 concentrations for each calendar month in 2000–19 at 0·1° × 0·1° spatial resolution
Estimated daily mean PM2·5 values were used to calculate mean PM2·5 for each calendar month, and the monthly mean values were averaged over the 20 years.
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of PM2·5 showed distinct seasonal patterns in many 
regions of the world.

In this study, the innovative DEML approach to 
estimate daily PM2·5 concentrations attained high 
prediction accuracy. Global estimation of PM2·5 
concentrations has been described in many previous 
modelling studies.6,9,25,26 An estimation of global daily 
PM2·5 concentration in 1997–2014 used remote sensing 
and meteorological data, and ground-based observations 
of PM2·5 in 55 countries, to train a machine learning 
algorithm, achieving a correlation coefficient for each 
independent validation dataset of 0·52–0·75.9 Similarly, 
other studies have measured global monthly and annual 
mean PM2·5 exposure. Hammer and colleagues6 assessed 
global estimates of annual mean PM2·5 concentrations in 
1998–2018 with data from satellite observations, 
a chemical transport model, and ground-based 
monitoring, obtaining an R² of 0·90–0·92. Shaddick and 
colleagues8 used a Bayesian hierarchical model with 
multiple data integration to estimate the global annual 
mean PM2·5 exposures in 2014 with an R² of 0·91. 
However, comparisons with previous global 
PM2·5 estimation studies are restricted given that few 
studies estimated the global daily (short-term) PM2·5 
exposure, and further comparison analyses are required.

Although ambient PM2·5 concentrations vary substan
tially across the world, few global land areas and 
populations are exposed to PM2·5 at concentrations lower 
than the 2021 WHO guideline limit.5 Based on modelled 
estimates for 2019, we found that 0·18% of the global 
land area and 0·001% of the global population had an 
annual exposure to PM2·5 lower than the WHO limit of 
5 µg/m³, and more than 70% of days in the year, even in 
some high-income countries such as Singapore and 
Qatar, had a daily mean PM2·5 exposure above 15 µg/m³. 
Additionally, the high spatiotemporal global PM2·5 
estimates provide valuable air pollution information for 
areas not covered by monitoring stations. For example, 
we observed a notable seasonal trend with regularly high 
regional PM2·5 concentrations in August and September 
in the Amazon rainforest region, where monitoring 
stations are scarce.

The spatiotemporal variations in PM2·5 concentrations 
might be the result of different types and components of 
anthropogenic fuel combustion emissions27 and the 
changes in natural sources due to extreme weather 
events such as bushfires and windblown dust.28 For 
example, northeast China had increased estimated 
PM2·5 concentrations in winter, which might stem from 
conducive weather patterns29 and winter heating-related 
fossil fuel combustion,30 whereas southern American 
countries such as Brazil had increased estimated PM2·5 
concentrations in August and September, which might 
be associated with anthropogenic emissions such as 
slash-and-burn cultivation.31 By contrast, the increasing 
frequency and scale of climate change-related air 
pollution events, such as windblown dust and bushfire 

events in 2019, might have contributed to the elevated 
PM2·5 concentrations in south-eastern Australia in 2019.32

This study has several limitations. Despite conducting 
spatial and temporal cross-validations to test the 
robustness of estimations with stable results, biases 
might exist in the DEML model due to the sparse ground 
station distribution in most regions, limited availability 
of station data before 2014, and uncertainties from some 
predictors, such as the fixed anthropogenic emissions 
assumption in the chemical transport model data 
after 2013. In areas with few monitoring stations, the 
estimates should be interpreted with caution because our 
model predictions in these areas were only validated 
by a small number of monitoring stations, and the air 
quality records from these location-based ground stations 
are not representative of overall exposure variations 
across a wide region. In addition, despite a high spatial 
resolution, uncertainties exist in the aggregation of 
gridded estimates and calculation of population-weighted 
exposure and exposed days. Our study also cannot 
account for personal exposure, and assuming equivalent 
population exposures within each grid cell might lead to 
exposure misclassification due to population migration 
and different activity patterns and behaviours, such as 
time spent indoors and outdoors.

This study is the first to apply an innovative DEML 
approach to estimate high-resolution global daily PM2·5 
exposure over two decades. Our DEML model showed 
accurate performance in predicting global and regional 
short-term and long-term PM2·5 concentrations, and 
provided a global perspective on the spatial and temporal 
variations of PM2·5 concentrations between 2000 and 2019. 
The results highlight the inequality of global air pollution 
population exposure, particularly in southern and eastern 
Asia. Our findings are of importance for global air 
pollution mitigation strategies and for assessing the 
short-term and long-term health effects of global PM2·5 
exposure.
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